Counterroating Incommensurate Magnetic Order and Strong Quantum Fluctuations in Honeycomb NaNi$_2$BiO$_6$

A. Scheie,1* K. Ross,2 E. Siebel,3 J. A. Rodriguez-Rivera,4 J. A. Tang,1 Yi Li,1 R. A. Cava,3 and C. Broholm,1,4

1Johns Hopkins University 2Colorado State University 3Princeton University 4NIST Center for Neutron Research scheie@jhu.edu

Introduction

The Kitaev model well-known for its spin liquid ground state, but it is just one of many bond dependent models on the honeycomb lattice. Here we present a first experimental realization of the bond-dependent magnetic 120° compass model exchange on a honeycomb lattice. The resulting incommensurate magnetism is characterized by strong quantum fluctuation.

NaNi$_2$BiO$_6$ is a magnetic Ni honeycomb compound with a mixture of 2/3 Ni$^{3+}$ ($S = 1/2$) and 1/3 Ni$^{2+}$ ($S = 1$) [1] shown in Fig. 1.

Neutron Scattering

Neutron diffraction shows the onset of magnetic order at low temperatures with an ordering wave vector $q = (\frac{1}{2}, \frac{1}{2}, 0.154 \pm 0.011)$, shown in Fig. 3. Magnetic refinements to this data (Fig. 4) and symmetry analysis reveal a two-step order whose spin order along the c axis below T_1 and in the ab plane below T_2.

In-plane Spin Structure

The $(\frac{1}{2}, \frac{1}{2})$ counterrotating in-plane order (Fig. 6) is not stabilized by isotropic interactions, and suggests anisotropic bond-dependent interactions. This particular structure matches the predicted ground state of the 120° compass model on the honeycomb lattice [2].

Interpretation: 120° compass exchange

Because of the unusual $(\frac{1}{2}, \frac{1}{2})$ order, the counterrotating spin structure, and the agreement with the theoretically predicted ground state, we attribute the magnetic structure in NaNi$_2$BiO$_6$ to the 120° compass interaction.

The origin of the 120° interaction in NaNi$_2$BiO$_6$ may be understood as arising from the anisotropy of the Ni-O-Ni bond (see Fig. 7). In this case, the anisotropy directions are 94.3° apart, which puts NaNi$_2$BiO$_6$ within the 120° phase but very close to the critical point of the Kitaev spin liquid phase ($87^\circ < \theta < 94^\circ$) [3].

Conclusion

This study constitutes the only experimental evidence we are aware of for magnetic 120° exchange on the honeycomb lattice, raising the possibility for discovering Kitaev-like spin liquid phases in 3d transition metal oxides.

Acknowledgments

This work was funded by DOE/BES DE-FG02-08ER46444 and DFG TRR80. AS and CB were also funded by the Gordon and Betty Moore foundation under EPiQS GMBF46728. Use of the NCNR facility was supported by NSF under Agreement No. DMR-1508249.

References

Heat Capacity

Heat capacity shows two second order transitions at $T_1 = 6.3$ K and $T_2 = 4.8$ K. Integrating $\Delta S = \int \frac{C}{T}$ reveals far less entropy than expected $R(2/3\ln(2) + 1/3\ln(3))$. This indicates either magnetic correlations above 20 K or residual entropy within the ordered phase.

Dynamic Magnetism

Sum rule analysis of the 1.8 K neutron spectrum (Fig. 5) indicates that 21(4)% of the magnetism is static within the ordered phase, which is only half of the maximum static moment $S_{max} = 38.9%$. This indicates strong magnetic fluctuations in the ground state.